Sunday, 16 September 2018

Super Sensor for the Automobile Industries


Sensor play vital role in the automobile manufacturing. Here we will see different sensors used in cars.

Modernised cars make decision based on data provided by different sensors which are interfaced with onboard computer systems . Many of these sensors operate in rough and harsh conditions that involves temperature , vibrations and environmental contaminants. 


In older vehicles , engine sensors and instruments were simple. Modern cars are built with complex electronics sensors. Digital circuits now controls engine through various sensors.

Sensors play important role in automotives. These enables greater facility and futuristics designs. For example at manufacturing unit robot arms are used to paint the cars and measuring the thickness of the coatings. Sensors monitor vehicle engines, fuel consumption and emissions along with aiding and protecting drivers and passengers.

All the sensors are connected with ECU which contains the hardware and software. Hardware is the consists of electronics components on a PCB with a micro controller chip as the main component. All the mechanical and pneumatic controls have been replaced by ECU and various sensors. Thus Controlling and monitoring in the modern vehicles is much easier with ECU.

Some leading  automobile Sensors Manufacturing Companies Bosch , Continental , Delphi Automotive, Denso, First Sensor AG, Honeywell, Luminar Technologies Inc., Micro Epsilon ,Sensata Technolgies, Wells Behicle Electronics


Saturday, 23 June 2018

Lithium batteries - Tourbo Chargers

Lithium batteries - Tourbo Chargers 

Image result for Lithium batteries

Lithium-ion batteries are the ultimate benchmark when it comes to mobile phones, tablet devices, and electric cars. Their storage capacity and power density are far superior to other rechargeable battery systems. Despite all the progress that has been made, however, smartphone batteries only last a day and electric cars need hours to be recharged.Lithium batteries - Tourbo Chargers 
Scientists are therefore working on ways to improve the power densities and charging rates of all-round batteries. "An important factor is the anode material," explains Dina Fattakhova-Rohlfing from the Institute of Energy and Climate Research (IEK-1).
"In principle, anodes based on tin dioxide can achieve much higher specific capacities, and therefore store more energy, than the carbon anodes currently being used. They have the ability to absorb more lithium ions," says Fattakhova-Rohlfing.
"Pure tin oxide, however, exhibits very weak cycle stability - the storage capability of the batteries steadily decreases and they can only be recharged a few times. The volume of the anode changes with each charging and discharging cycle, which leads to it crumbling."
One way of addressing this problem is hybrid materials or nanocomposites - composite materials that contain nanoparticles. The scientists developed a material comprising tin oxide nanoparticles enriched with antimony, on a base layer of graphene. The graphene basis aids the structural stability and conductivity of the material.
The tin oxide particles are less than three nanometres in size - in other words less than three millionths of a millimetre - and are directly "grown" on the graphene. The small size of the particle and its good contact with the graphene layer also improves its tolerance to volume changes - the lithium cell becomes more stable and lasts longer.
Three times more energy in one hour"Enriching the nanoparticles with antimony ensures the material is extremely conductive," explains Fattakhova-Rohlfing. "This makes the anode much quicker, meaning that it can store one-and-a-half times more energy in just one minute than would be possible with conventional graphite anodes. It can even store three times more energy for the usual charging time of one hour."
"Such high energy densities were only previously achieved with low charging rates," says Fattakhova-Rohlfing. "Faster charging cycles always led to a quick reduction in capacity." The antimony-doped anodes developed by the scientists, however, retain 77 % of their original capacity even after 1,000 cycles.
"The nanocomposite anodes can be produced in an easy and cost-effective way. And the applied concepts can also be used for the design of other anode materials for lithium-ion batteries," explains Fattakhova-Rohlfing. "We hope that our development will pave the way for lithium-ion batteries with a significantly increased energy density and very short charging time."
Lithium batteries - Tourbo Chargers 

Featured Post